LC ${ }^{2}$ MOS
μ P-Compatible 14-Bit DAC

FEATURES

All Grades 14-Bit Monotonic Over the Full Temperature Range
Low Cost 14-Bit Upgrade for 12-Bit Systems
14-Bit Parallel Load with Double Buffered Inputs
Small 24-Pin, 0.3" DIP and SOIC
Low Output Leakage ($<20 \mathrm{nA}$) Over the Full Temperature Range

APPLICATIONS
Microprocessor Based Control Systems
Digital Audio
Precision Servo Control
Control and Measurement in High Temperature Environments

GENERAL DESCRIPTION

The AD 7538 is a 14-bit monolithic CM OS D/A converter which uses laser trimmed thin-film resistors to achieve excellent linearity.
The DAC is loaded by a single 14-bit wide word using standard Chip Select and M emory Write Logic. D ouble buffering, which is optional using $\overline{\mathrm{LDAC}}$, allows simultaneous update in a system containing multiple AD 7538s.
A novel low leakage configuration (U.S. Patent No. 4,590,456) enables the AD 7538 to exhibit excellent output leakage current characteristics over the specified temperature range.
The AD 7538 is manufactured using the Linear C ompatible CM OS (LC ${ }^{2} \mathrm{M}$ OS) process. It is speed compatible with most microprocessors and accepts T TL or CM OS logic level inputs.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Guaranteed M onotonicity

The AD 7538 is guaranteed monotonic to 14-bits over the full temperature range for all grades.
2. Low Cost

The AD 7538, with its 14-bit dynamic range, affords a low cost solution for 12-bit system upgrades.
3. Small Package Size

The AD 7538 is packaged in a small 24 -pin, 0.3 " DIP and a 24-pin SOIC.
4. Low Output Leakage

By tying $\mathrm{V}_{\text {SS }}$ (Pin 24) to a negative voltage, it is possible to achieve a low output leakage current at high temperatures.
5. Wide Power Supply T olerance

The device operates on $a+12 \mathrm{~V}$ to $+15 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$, with $\mathrm{a} \pm 5 \%$ tolerance on this nominal figure. All specifications are guaranteed over this range.

REV. A

[^0]

Parameter	J, K Versions	A, B Versions	S Version	T Version	Units	Test Conditions/Comments
```ACCURACY Resolution Relative Accuracy Differential N onlinearity Full-Scale Error \(+25^{\circ} \mathrm{C}\) \(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) G ain Temperature C oefficient \({ }^{3}\); \(\Delta \mathrm{G}\) ain/ \(\Delta \mathrm{T}\) emperature Output Leakage Current Iout (Pin 3) \(+25^{\circ} \mathrm{C}\) \(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) \(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\)```	$\begin{array}{\|l} 14 \\ \pm 2 \\ \pm 1 \\ \\ \pm 4 \\ \pm 8 \\ \\ \pm 2 \\ \\ \pm 5 \\ \pm 10 \\ \pm 25 \end{array}$	$\begin{aligned} & 14 \\ & \pm 1 \\ & \pm 1 \\ & \pm 4 \\ & \pm 5 \\ & \\ & \pm 2 \\ & \\ & \pm 5 \\ & \pm 10 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & 14 \\ & \pm 2 \\ & \pm 1 \\ & \\ & \pm 4 \\ & \pm 10 \\ & \\ & \pm 2 \\ & \\ & \pm 5 \\ & \pm 20 \\ & \pm 150 \end{aligned}$	$\begin{aligned} & 14 \\ & \pm 1 \\ & \pm 1 \\ & \\ & \pm 4 \\ & \pm 6 \\ & \\ & \pm 2 \\ & \\ & \pm 5 \\ & \pm 20 \\ & \pm 150 \end{aligned}$	Bits   LSB max   LSB max   LSB max   LSB max   ppm $/{ }^{\circ} \mathrm{C}$ typ   nA max   nA max   nA max	All Grades Guaranteed M onotonic Over T emperature.   $M$ easured U sing Internal $R_{F B} D A C$ Registers Loaded with All 1 s .   All Digital Inputs 0 V $\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=-300 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$
REFERENCE INPUT Input Resistance, Pin 1	$\begin{aligned} & 3.5 \\ & 10 \end{aligned}$	$k \Omega$ min $k \Omega$ max	T ypical Input Resistance $=6 \mathrm{k} \Omega$			
DIGITAL INPUTS   $V_{I H}$ (Input High Voltage)   VIL (Input Low Voltage)   $I_{\text {IN }}$ (Input Current)   $+25^{\circ} \mathrm{C}$   $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$   $\mathrm{C}_{\text {IN }}\left(\right.$ Input C apacitance) ${ }^{3}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 1 \\ & \pm 10 \\ & 7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & \pm 10 \\ & 7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 1 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 1 \\ & \pm 10 \\ & 7 \end{aligned}$	$V$ min   $\vee$ max   $\mu \mathrm{A}$ max $\mu \mathrm{A}$ max pF max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$
POWER SUPPLY   $V_{D D}$ Range   $V_{\text {ss }}$ Range   IDD	$\begin{array}{\|l} 11.4 / 15.75 \\ -200 /-500 \\ 4 \\ 500 \end{array}$	$\begin{aligned} & 11.4 / 15.75 \\ & -200 /-500 \\ & 4 \\ & 500 \end{aligned}$	$\begin{aligned} & 11.4 / 15.75 \\ & -200 /-500 \\ & 4 \\ & 500 \end{aligned}$	$\begin{aligned} & 11.4 / 15.75 \\ & -200 /-500 \\ & 4 \\ & 500 \end{aligned}$	$V \min / V \max$ mV min/mV max mA max $\mu \mathrm{A}$ max	Specification Guaranteed Over This Range   All Digital Inputs $\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$   All Digital Inputs 0 V or $V_{D D}$

These characteristics are included for Design Guidance only and are not sub-
 AC PERFORMANC

Parameter	$\mathrm{T}_{A}=+25^{\circ} \mathrm{C} \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$		Units	Test Conditions/Comments
Output Current Settling Time	1.5		$\mu \mathrm{s}$ max	To 0.003\% of Full-Scale Range. I OUT L oad $=100 \Omega, C_{\text {EXT }}=13 \mathrm{pF}$. DAC Register Alternately Loaded with All $1 s$ and All 0s. Typical Value of Settling Time Is $0.8 \mu$ s.
Digital to Analog G litch Impulse	20		$n \mathrm{~V}$-sec typ	$M$ easured with $V_{\text {REF }}=0 \mathrm{~V}$. I Iout Load $=100 \Omega, \mathrm{C}_{\text {EXT }}=13 \mathrm{pF}$. DAC Register Alternately Loaded with All 1 s and All Os .
M ultiplying F eedthrough Error	3	5	mV p-p typ	$V_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$ Sine Wave DAC Register Loaded with All Os.
Power Supply Rejection $\Delta G$ ain/ $\Delta V_{D D}$ O utput C apacitance	$\pm 0.01$	$\pm 0.02$	\% per \% max	$\Delta V_{\text {DD }}= \pm 5 \%$
$\mathrm{C}_{\text {out ( }}$ (Pin 3)	260	260	pF max	DAC Register Loaded with All 1s
$\mathrm{C}_{\text {out ( }}$ (Pin 3)	130	130	pF max	DAC Register Loaded with All 0 s
O utput Noise Voltage Density ( $10 \mathrm{~Hz}-100 \mathrm{kHz}$ )	15		$\mathrm{nV} \sqrt{\mathrm{Hz}}$ typ	$M$ easured Between $\mathrm{R}_{\mathrm{Fb}}$ and $\mathrm{I}_{\text {OUT }}$

## NOTES

Temperature range as follows: J, K Versions: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
A, B Versions: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
S, T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{2}$ Specifications are guaranteed for a $\mathrm{V}_{D D}$ of +11.4 V to +15.75 V . At $\mathrm{V}_{D D}=5 \mathrm{~V}$, the device is fully functional with degraded specifications.
${ }^{3}$ Sample tested to ensure compliance.
Specifications subject to change without notice.

TIMING CHARACTERISTICS ${ }^{1} \begin{aligned} & \left(\begin{array}{l}\left(V_{D D}=+11.4 ~\right. \\ \text { All specifications }\end{array} \mathrm{T}_{\text {MII }} \text { to } \mathrm{T}_{\text {MAX }} \text { unless otherwise noted. See Figure } 1 \text { for Timing Diagram. }\right)\end{aligned}$

Parameter	Limit at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Limitat $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Limit at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	Units	Test Conditions/Comments
$\mathrm{t}_{1}$	0	0	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Setup T ime
$\mathrm{t}_{2}$	0	0	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}} \mathrm{H}$ old T ime
$t_{3}$	170	200	240	ns min	LDAC Pulse Width
$\mathrm{t}_{4}$	170	200	240	ns min	W rite Pulse W idth
$\mathrm{t}_{5}$	140	160	180	ns min	D ata Setup Time
$\mathrm{t}_{6}$	20	20	30	ns min	D ata H old T ime

NOTES
${ }^{1}$ Temperature range as follows: J, K Versions: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
A, B Versions: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
S, T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS*

$V_{\text {DD }}$ (Pin 23) to DGND	-0.3 V, +17 V
$\mathrm{V}_{\text {SS }}$ (Pin 24) to AGND	-15 V, +0.3 V
$\mathrm{V}_{\text {Ref }}(\operatorname{Pin} 1)$ to AGND	$\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {RFb }}$ (Pin 2) to AGND	$\pm 25 \mathrm{~V}$
Digital Input Voltage (Pins 6-22) to DGND	-0.3 V, V $\mathrm{VDD}^{\text {+ }}+0.3 \mathrm{~V}$
$V_{\text {PIN3 }}$ to DGND	-0.3 V, V $\mathrm{VDD}^{\text {+ }}+0.3 \mathrm{~V}$
AGND to DGND	-0.3 V, V $\mathrm{VDD}+0.3 \mathrm{~V}$
Power Dissipation (Any Package)	
To $+75^{\circ} \mathrm{C}$	1000 mW
D erates Above $+75^{\circ} \mathrm{C}$	. $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

## O perating T emperature Range

Commercial (J, K Versions) . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (A, B Versions) . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T Versions) . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage T emperature . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7538 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION DIP, SOIC


## AD7538

## TERMINOLOGY

## RELATIVE ACCURACY

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error and is normally expressed in Least Significant Bits or as a percentage of full-scale reading.

## DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of $\pm 1$ LSB max over the operating temperature range ensures monotonicity.

## GAIN ERROR

G ain error is a measure of the output error between an ideal DAC and the actual device output. It is measured with all 1 s in the DAC after offset error has been adjusted out and is expressed
in Least Significant Bits. Gain error is adjustable to zero with an external potentiometer.

## DIGITAL-TO-ANALOG GLITCH IMPULSE

The amount of charge injected from the digital inputs to the analog output when the inputs change state is called Digital-to-Analog G litch Impulse. This is normally specified as the area of the glitch in either pA -secs or nV -secs depending upon whether the glitch is measured as a current or voltage. It is measured with $\mathrm{V}_{\text {REF }}=A G N D$.

## OUTPUT CAPACITANCE

This is the capacitance from $I_{\text {OUT }}$ to $A G N D$.

## OUTPUT LEAKAGE CURRENT

O utput Leakage Current is current which appears at I IOUT with the DAC register loaded to all Os.

## MULTIPLYING FEEDTHROUGH ERROR

This is the ac error due to capacitive feedthrough from $V_{\text {REF }}$ terminal to lout with DAC register loaded to all zeros.

ORDERING GUIDE

Model	Temperature   Range	Relative   Accuracy	Full-Scale   Error	Package   Option*
AD 7538JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{N}-24$
AD 7538K N	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 4 \mathrm{LSB}$	$\mathrm{N}-24$
AD 7538JR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{R}-24$
AD 7538K R	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 4 \mathrm{LSB}$	$\mathrm{R}-24$
AD 7538AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{Q}-24$
AD 7538BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 4 \mathrm{LSB}$	$\mathrm{Q}-24$
AD 7538SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{Q}-24$
AD 7538T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 4 \mathrm{LSB}$	$\mathrm{Q}-24$

*N $=$ Plastic DIP; Q = Cerdip; R = SOIC.

## PIN FUNCTION DESCRIPTION

Pin	Mnemonic	Description			
1	$V_{\text {Ref }}$	$V$ oltage Reference.			
2	$\mathrm{R}_{\mathrm{FB}}$	F eedback Resistor. U sed to close the loop around an external op amp.			
3	Iout	Current Output T erminal.			
4	AGND	A nalog G round			
5	DGND	Digital Ground			
6-19	DB13-DB0	D ata Inputs. Bit 13 (M SB) to Bit 0 (LSB).			
20	$\overline{\text { LDAC }}$	Chip Select Input. Active LOW.			
21	$\overline{\mathrm{CS}}$	Asynchronous Load DAC Input. Active LOW.			
22	WR	Write Input. Active LOW.			
		$\overline{\mathbf{C S}}$	$\overline{\text { LDAC }}$	WR	OPERATION
		0	1	0	Load Input Register.
		1	0	X	Load DAC Register from Input Register.
		0	0	0	Input and DAC R egisters are T ransparent.
		1	1	X	No Operation.
		X	1	1	No Operation.
		NOTE: X D on't Care.			
23	$V_{\text {DD }}$	+12 V to +15 V supply input.			
24	$\mathrm{V}_{\text {SS }}$	Bias pin for High T emperature Low Leakage configuration. T o implement low leakage			

## D/A SECTION

Figure 2 shows a simplified circuit diagram for the AD 7538 D/A section. T he three M SBs of the 14-bit D ata W ord are decoded to drive the seven switches A-G. The 11 LSBs of the D ata W ord consist of an R-2R ladder operated in a current steering configuration.

The R-2R ladder current is $1 / 8$ of the total reference input current. 7/8 I flows in the parallel ladder structure. Switches A-G steer equally weighted currents between $\mathrm{I}_{\text {OUt }}$ and AGND.
Since the input resistance at $\mathrm{V}_{\text {REF }}$ is constant, it may be driven by a voltage source or a current source of positive or negative polarity.

## CIRCUIT INFORMATION



Figure 2. Simplified Circuit Diagram for the AD7538 D/A Section

## EQUIVALENT CIRCUIT ANALYSIS

Figure 3 shows an equivalent circuit for the analog section of the AD $7538 \mathrm{D} / \mathrm{A}$ converter. The current source $\mathrm{I}_{\text {LEAKAGE }}$ is composed of surface and junction leakages. The resistor $\mathrm{R}_{0}$ denotes the equivalent output resistance of the DAC which varies with input code. $\mathrm{C}_{\text {out }}$ is the capacitance due to the current steering switches and varies from about 90 pF to 180 pF (typical values) depending upon the digital input. $g\left(V_{\text {REF }}, N\right)$ is the $T$ hevenin equivalent voltage generator due to the reference input voltage, $\mathrm{V}_{\text {REF }}$, and the transfer function of the DAC ladder, N.


Figure 3. AD7538 Equivalent Analog Output Circuit

## DIGITAL SECTION

T he digital inputs are designed to be both TTL and 5 V CM OS compatible. All logic inputs are static protected M OS gates with typical input currents of less than 1 nA . To minimize power supply currents, it is recommended that the digital input voltages be driven as close as possible to 0 V and 5 V logic levels.

## UNIPOLAR BINARY OPERATION (2-QUADRANT

## MULTIPLICATION)

Figure 4 shows the circuit diagram for unipolar binary operation. With an ac input, the circuit performs 2 quadrant multiplication. The code table for F igure 4 is given in Table I.
C apacitor C 1 provides phase compensation and helps prevent overshoot and ringing when high-speed op amps are used.


Figure 4. Unipolar Binary Operation
Table I. Unipolar Binary Code Table for AD7538

Binary Number In DAC Register MSB   LSB	Analog Output, $\mathrm{V}_{\text {Out }}$
11111111111111	$-\mathrm{V}_{\text {IN }}\left(\frac{16383}{16384}\right)$
10000000000000	$-\mathrm{V}_{\text {IN }}\left(\frac{8192}{16384}\right)=-1 / 2 \mathrm{~V}_{\text {IN }}$
00000000000001	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{16384}\right)$
00000000000000	0 V

## AD7538

For zero offset adjustment, the DAC register is loaded with all Os and amplifier offset ( $\mathrm{V}_{\text {OS }}$ ) adjusted so that $\mathrm{V}_{\text {OUt }}$ is 0 V . Adjusting $\mathrm{V}_{\text {OUT }}$ to 0 V is not necessary in many applications, but it is recommended that $\mathrm{V}_{\text {OS }}$ be no greater than $\left(25 \times 10^{-6}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$ to maintain specified DAC accuracy (see Applications Hints).

F ull-scale trimming is accomplished by loading the DAC register with all 1 s and adjusting R 1 so that $\mathrm{V}_{\text {OUTA }}=-\mathrm{V}_{\text {IN }}(16383 / 16384)$. F or high temperature operation, resistors and potentiometers should have a low T emperature C oefficient. In many applications, because of the excellent G ain T.C. and G ain Error specifications of the AD 7538, G ain Error trimming is not necessary. In fixed reference applications, full scale can also be adjusted by omitting R1 and R2 and trimming the reference voltage magnitude.

## BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)
The recommended circuit diagram for bipolar operation is shown in Figure 5. Offset binary coding is used. The code table for Figure 5 is given in T able II.
With the DAC Ioaded to 1000000000 0000, adjust R 1 for $\mathrm{V}_{0}=0 \mathrm{~V}$. Alternatively, one can omit R1 and R2 and adjust the ratio of $R 5$ and $R 6$ for $V_{0}=0 \mathrm{~V}$. Full-scale trimming can be accomplished by adjusting the amplitude of $\mathrm{V}_{\text {IN }}$ or by varying the value of R 7 .
The values given for R1, R2 are the minimum necessary to calibrate the system for resistors, R5, R6, R 7 ratio matched to $0.1 \%$. System linearity error is independent of resistor ratio matching and is affected by DAC linearity error only.
When operating over a wide temperature range, it is important that the resistors be of the same type so that their temperature coefficients match.
For further information sec "CM OS DAC Application Guide", 3rd Edition, Publication N umber G 872b-8-1/89 available from Analog D evices.


Figure 5. Bipolar Operation

## LOW LEAKAGE CONFIGURATION

For CM OS M ultiplying D/A converters, as the device is operated at higher temperatures, the output leakage current increases. For a 14-bit resolution system, this can be a significant source of error. The AD 7538 features a leakage reduction configuration (U.S. Patent No. 4,590,456) to keep the leakage current low over an extended temperature range. O ne may operate the device with or without this configuration. If $\mathrm{V}_{\mathrm{SS}}(\mathrm{Pin} 24)$ is tied to AGND then the DAC will exhibit normal output leakage current at high temperatures. T o use the low leakage facility,

Table II. Bipolar Code Table for Offset Binary Circuit of Figure 5.

Binary Number In DAC Register MSB LSB	Analog Output $^{\text {V }}$ Out
11111111111111	$+\mathrm{V}_{\text {IN }}\left(\frac{8191}{8192}\right)$
10000000000001	$+\mathrm{V}_{\text {IN }}\left(\frac{1}{8192}\right)$
10000000000000	0 V
01111111111111	$-V_{\text {IN }}\left(\frac{1}{8192}\right)$
00000000000000	$-\mathrm{V}_{\text {IN }}\left(\frac{8191}{8192}\right)$

$\mathrm{V}_{\text {SS }}$ should be tied to a voltage of approximately -0.3 V as in Figures 4 and 5. A simple resistor divider (R3, R4) produces approximately -300 mV from -15 V . The capacitor C 2 in parallel with R 3 is an integral part of the low leakage configuration and must be $4.7 \mu \mathrm{~F}$ or greater. Figure 6 is a plot of leakage current versus temperature for both conditions. It clearly shows the improvement gained by using the low leakage configuration.


Figure 6. Graph of Typical Leakage Current vs. Temperature for AD7538

## PROGRAMMABLE GAIN AMPLIFIER

The circuit shown in Figure 7 provides a programmable gain amplifier (PGA). In it the DAC behaves as a programmable resistance and thus allows the circuit gain to be digitally controlled.


Figure 7. Programmable Gain Amplifier (PGA)

The transfer function of Figure 7 is:

$$
\begin{equation*}
\text { Gain }=\frac{V_{\text {OUT }}}{V_{\text {IN }}}=-\frac{R_{E Q}}{R_{F B}} \tag{1}
\end{equation*}
$$

$R_{E Q}$ is the equivalent transfer impedance of the DAC from the $\mathrm{V}_{\text {REF }}$ pin to the $\mathrm{I}_{\text {OUT }}$ pin and can be expressed as

$$
\begin{equation*}
R_{E Q}=\frac{2^{n} R_{I N}}{N} \tag{2}
\end{equation*}
$$

Where: n is the resolution of the DAC
$N$ is the DAC input code in decimal
$\mathrm{R}_{\text {IN }}$ is the constant input impedance of the DAC $\left(R_{I N}=R_{L A D}\right)$
Substituting this expression into Equation 1 and assuming zero gain error for the DAC ( $\mathrm{R}_{\mathrm{IN}}=\mathrm{R}_{\mathrm{FB}}$ ) the transfer function simplifies to

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=-\frac{2^{n}}{N} \tag{3}
\end{equation*}
$$

The ratio $\mathrm{N} / 2^{\mathrm{n}}$ is commonly represented by the term D and, as such, is the fractional representation of the digital input word.

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=-\frac{-2^{n}}{N}=\frac{-1}{D} \tag{4}
\end{equation*}
$$

Equation 4 indicates that the gain of the circuit can be varied from 16,384 down to unity (actually $16,384 / 16,383$ ) in 16,383 steps. T he all 0 s code is never applied. This avoids an openloop condition thereby saturating the amplifier. With the all Os code excluded there remains $2^{n}-1$ possible input codes allowing a choice of $2^{n}-1$ output levels. In dB terms the dynamic range is

$$
20 \log _{10} \frac{V_{\text {OUT }}}{V_{\text {IN }}}=20 \log _{10}\left(2^{n}-1\right)=84 \mathrm{~dB}
$$

## APPLICATION HINTS

Output Offset: CM OS D/A converters in circuits such as Figures 4 and 5 exhibit a code dependent output resistance which in turn can cause a code dependent error voltage at the output of the amplifier. T he maximum amplitude of this error, which adds to the $\mathrm{D} / \mathrm{A}$ converter nonlinearity, depends on $\mathrm{V}_{0 s}$, where $\mathrm{V}_{0 \text { S }}$ is the amplifier input offset voltage. T o maintain specified accuracy with $\mathrm{V}_{\text {ReF }}$ at 10 V , it is recommended that $\mathrm{V}_{\text {OS }}$ be no greater than 0.25 mV , or $\left(25 \times 10^{-6}\right)\left(\mathrm{V}_{\text {REF }}\right)$, over the temperature range of operation. The AD 711 is a suitable op amp. The op amp has a wide bandwidth and high slew rate and is recommended for ac and other applications requiring fast settling.
General Ground Management: Since the AD 7538 is specified for high accuracy, it is important to use a proper grounding technique. AC or transient voltages between AGND and DGND can cause noise injection into the analog output. The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the AD 7538. In more complex systems where the AGND and DGND intertie is on the backplane, it is recommended that two diodes be connected in inverse parallel between the AD 7538 AGND and DGND pins (1N914 or equivalent).

## MICROPROCESSOR INTERFACING

The AD 7538 is designed for easy interfacing to 16 -bit microprocessors and can be treated as a memory mapped peripheral. This reduces the amount of external logic needed for interfacing to a minimal.

## AD7538-8086 INTERFACE

Figure 8 shows the 8086 processor interface to a single device. In this setup the double buffering feature (using $\overline{\text { LDAC }}$ ) of the DAC is not used. The 14-bit word is written to the DAC in one M OV instruction and the analog output responds immediately.


Figure 8. AD7538-8086 Interface Circuit
In a multiple DAC system the double buffering of the AD 7538 allows the user to simultaneously update all DAC s. In Figure 9, a 14-bit word is loaded to the Input Registers of each of the DACs in sequence. Then, with one instruction to the appropriate address, CS4 (i.e., LDAC) is brought low, updating all the DACs simultaneously.


Figure 9. AD7538-8086 Interface: Multiple DAC System

## AD 7538-MC68000 INTERFACE

Figure 10 shows the M C 68000 processor interface to a single device. In this setup the double buffering feature of the DAC is not used and the appropriate data is written into the DAC in one M OVE instruction.


Figure 10. AD7538-MC68000 Interface

## DIGITAL FEEDTHROUGH

The digital inputs to the AD 7538 are directly connected to the
microprocessor bus in the preceding interface configurations. These inputs will be constantly changing even when the device is not selected. The high frequency logic activity on the bus can feed through the DAC package capacitance to show up as noise on the analog output. To minimize this Digital F eedthrough isolate the DAC from the noise source. Figure 11 shows an interface circuit which uses this technique. All data inputs are latched from the bus by the $\overline{\mathrm{CS}}$ signal. O ne may also use other means, such as peripheral interface devices, to reduce the Digital Feedthrough.


Figure 11. AD7538 Interface Circuit Using Latches to Minimize Digital Feedthrough

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

